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Abstract 

The Monte Carlo program ELSIM which simulates elastic processes 
of hadrons in thick targets is modified to accommodate heavy ions. 
These modifications are briefly indicated. 

1 Introduction 

The Monte Carlo code ELSIM [l] simulates elastic and quasi-elastic, i.e., of 
limited energy loss, processes of high energy hadrons in a thick target with 
particular attention to scattering off edges and the like. Its main applica- 
tions concern accelerator beam loss, beam scraping, etc. Particles which 
only participate in elastic processes and are then reflected back into the 
aperture may cause problems elsewhere in the acceleratoi lattice-often far 
removed from where the beam loss occurs. Therefore ELSIM is often run in 
conjunction with an accelerator tracking program. It can also be used as the 
fist stage in energy deposition studies. For example, when beam is lost in 
a superconducting magnet ELSIM can provide energy deposition by the inci- 
dent particles along with a file specifying coordinates and momenta of the 
inelastic interactions. The latter can then be processed by a program such 
as CASIM [z] to complete the energy deposition simulation. A new version 
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of this program, called ELSHIM, is introduced here which extends ELSIM to 

include heavy ions as projectiles. 
The physical processes and corresponding algorithms included in ELSIM 

are reasonably well documented [I] and here only the changes introduced to 
accommodate heavy ions are noted. For the present it is assumed throughout 
that the (bare) incident ion retains its initial 2 and A. Processes which 
change Z and A by one or two units may have large probabilities attached 
to them and their products may cause problems of the type mentioned above 
for elastics. This makes ELSRIM the logical place to include them and should 
therefore be considered in any future upgrades. Among these processes is 
electron capture (and stripping) of the projectile. 

Starting from scratch, an ELSHIM calculation proceeds in two parts: for 
a given projectile ion species (Zp, Ap), target species (ZT, AT), and inci- 
dent momentum, the auxiliary program AICS prepares a file which lists the 
necessary cross sections in a form convenient for referencing in the Monte 
Carlo. Such a fle may serve repeatedly as input to explore various ge- 
ometries and beam loss conditions. The user must also specify a number, 
typically between 0.9 and 1.0, which represents the fractional cut-off en- 
ergy, i.e., particles which fall below this energy are no longer followed in 
ELSHIM. Towards the lower end of this energy range there will be important 
contributions from inelastic processes not treated in ELSHIM. If-in a given 
problem-such low cutoff particles prove to be important then the ELSHIM 

results may have to be supplemented by other means. 

2 Updates 

Two different types of basic processes are recognized in ELSIM: (a) cow 
tinuous processes: multiple Coulomb scattering (MCS), ionization losses, 
and production of low energy e+e- pairs, versus (b) point processes which 
embrace everything else: large angle scattering (above some cutoff angle), 
e+e- pairs (above some cutoff energy), delta rays, and absorption. Brems- 
strahbmg is omitted here since it is expected to be relatively unimportant 
even at the highest RAIC energies. Diffractive target excitation is likewise 
not carried over into ELSHIM. It is not very significant for incident hadrons 
and is expected to be even less so here because it is easier to break up a 
nucleus than a nucleon or pion in the target dissociation process. 

For heavy ions the relative importance of the basic processes differs from 
that for hadrons and this necessitates some changes. Between even moder- 
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ately heavy ions Coulomb scattering, (LX Z&Z;), will strongly dominate the 
angular deflection. This affects the choice of a cutoff angle between MCs and 
large angle scattering. Ionization losses (a 2;) are also much larger and 
this affects the choice of a cutoff energy between continuous and point pro- 
cesses. As usual, a particle (ion) in the Monte Carlo is transported through 
the geometry from one point process to the next. At each such juncture the 
combined effects of the continuous processes-and the possibility of escape 
from the target-are taken into account. This makes the average steplength 
between point processes a basic parameter of the calculation. 

2.1 Coulomb and Nuclear Scattering 

For incident particles with unit charge, ref. [l] shows it is possible to choose 
a cutoff angle such that the angular region where nuclear scattering is im- 
portant falls into the single scattering regime while keeping the step length 
between individual processes to a reasonable size (a few g/cm’) [3]. To 
maintain this for heavy ions means step size would decrease with Zp essen- 
tially as 2~’ and computation time would increase as 2;. The simplest 
remedy is to extend the MCS regime out into the nuclear regime. The justi- 
fication for this step is somewhat lengthy and is sketched in the Appendix. 
For simplicity, all coherent nuclear scattering, i.e., where both nuclei remain 
intact, is put into the MCS regime. Incoherent scattering-where either nu- 
cleus (or both) emits a nucleon-is included in MCS below a cutoff angle 
and treated event-by-event above it. The cutoff angle is placed at one tenth 
the rms angle determined from Coulomb plus coherent nuclear scattering 
for an estimated average steplength. 

Therms scattering angle, (S’), which is the only parameter of the Fermi 
distribution, is evaluated numerically in RIGS since it includes all of the 
Coulomb, nuclear, and interference regions. In ref. [l] Glaubm theory [4] is 
used to calculate the angular distributions. This should work for heavy ions 
as well [S]. One difference here is the assumed nuclear densities, which in 
ref. [1] are the harmonic oscillator well densities for light nuclei and Wood- 
Saxon densities for heavier nuclei. Here the densities are all taken to be of 
the former type: 

p(r) = 0 (1 + fh’/c?) exp ( -?/zcP) (1) 

but with fi and o treated as adjustable parameters while a provides correct 
normalization. The choice of p = 0.30A’/3 - 0.47 (but p = 0 for A 5 4) and 
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c = 0.35A113 - 0.44 ensures that eq. 1 predicts rms and half-density radii 
close to experiment everywhere. The values of p are such that only a slight 
depression of p(r) results in the central core. Eq. 1 has the advantage that 
the ‘profile functions’ for two colliding nuclei can be evaluated analytically, 
contrary to those of, e.g., Wood-Saxon densities. 

Incoherent nuclear scattering between two ions can be divided into three 
components, vie., (1) scattering between the (unaltered) projectile and a 
target nucleon which is ejected from the nucleus, (2) the obverse: target 
nucleus on projectile nucleon, and (3) elastic scattering between a projectile 
nucleon and a target nucleon where both are liberated. Within the assump- 
tions already made only the first case is to be included here (though (2) 
and (3) being of the low AZ, low AA variety are of potential interest). 
This part of the incoherent cross section is calculated using Glauber theory 
for nucleon-nucleus scattering multiplied by an ‘effective number’ of target 

nudeons NA = 1.6AgS [6]. 

2.2 Ionization Losses 

The cutoff energy between continuous ionization losses and the &ray point 
process is set here much higher than 10 MeV as in [I] for reasons similar to 
those cited above with respect to MCS. The cross sections for these processes 
also increase with 2 like Za. Maintaining such a low cutoff would thus also 
become quickly prohibitive in computer time and, because of the increase 
in overall energy loss, there is not much reason for it, i.e., the energy loss 
in a typical individual event is dwarfed by the continuous energy loss. For 
this reason the cutoff is placed at one tenth the estimated energy loss in 
an average steplength between point processes. This results in energetic 
&ray production cross sections which are readily accommodated event-by- 
event. (For heavy enough nuclei all ionization loss becomes continuous.) 
In evaluating cross sections and average energy loss, especially towards the 
high energy end of the ejected electron energy (which is proportional to the 
square of the 4-momentum transfer t = -2m.T.) a nuclear form factor must 
be included. It is convenient to use the Fourier transform of eq. 1 for this 
since this is easily evaluated analytically. 

2.3 Pair Production 

The total energy loss per unit length due to pair production is assumed to 
equal that for protons multiplied by 2 $. The energy loss distribution in a 
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pair production event is assumed to follow the parametrization of ref. [7]. 
The particulars of the latter make it convenient to lump energy loss below 
lo-‘E, with the continuous energy losses while treating larger losses as 
individual events. To account for energy loss fluctuations the amount lost 
in a Monte Carlo step is chosen from a Landau distribution with average 
equal to the combined average ionization and pair production loss within 
the step. Angular deflections associated with pair production are neglected. 

2.4 Absorption 

The nuclear absorption cross section is represented by the Brad&Peters for- 
mula [8] 

m = UT’ A;‘” + A;13 4 I1 (-4 

with to = 1.2 fm. To this is added the cross section for electromagnetic 
fragmentation [9] which makes a significant contribution. In the latter pro- 
cess the final state is usually close in 2 and A to the initial one and, as 
mentioned in the Introduction, this may therefore be promoted to a sepa- 
rate process in a future ELSAIM upgrade. Absorption can be treated either 
by removing the projectile &om further consideration or by exponentially 
downweighting along the trajectory. The former has the advantage that all 
weights are equal to unity (and hence can be suppressed) while the latter 
method generally benefits statistics. 

3 Remarks 

As pointed out in ref. [l] the present approach is capable of solving elastic 
scattering problems in thick targets to the same degree of approximation as 
that of the Fermi distribution in a homogeneous target plus the effects of the 
point processes which apply-in principle-to arbitary accuracy. This holds 
also for heavy ions. Compared to ita hadron counterpart, considerable more 
uncertainty in attached to the heavy ion version. The nuclear models used 
above to quantify density distributions, etc., weaken the overall reliability of 
the program somewhat. The convenience of representing the entire collection 
of known nuclides by a few parameters entails that some species are not 
optimally characterized. One might therefore consider introducing ad hoc 
parameters for frequently studied projectile and target species-if one has 
more confidence in them. For proton projectiles ELSIM is recommended 
over the new version mostly because the nuclear scattering model has better 
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experimental backing. [lo] As mentioned in several places above, inclusion 
of low AZ, low AA processes would improve the usefulness of the program. 

The caveat of ref. [l] applies here also: a typical surface of, e.g., a col- 
limator, encountered in practice may differ considerably from the ideal flat 
one assumed to be present in edge scattering. It applies even more strongly 
when a complicated surface is represented by a combination of flat ones. 
Questions of alignment, etc., may also have important bearings on the prob- 
lem. Such uncertainties do not in any way invalidate ELSHIM yet impair its 
predictive power. It is dXcult to remedy this situation since usually one 
does not know precisely what those imperfections, etc., are. And even if 
one had such information it would more likely be used to try to rectify the 
actual device instead of improving the simulation. In many instances one 
also lacks sufficient detail about beam loss to achieve a high degree of real- 
ism in that part of the calculation. ELSHIM can nonetheless be a valuable 
toolin exploring thick target scattering problems. Idealized simulations may 
give order-of-magnitude answers, e.g., to reveal whether or not a problem 
exists or to help point to a solution. They have broader applicability and 
are usually easier to interpret than ultra-realistic ones. The latter kind may 
often be bracketed between two or more idealized cases or it may suffice to 
address them on a ‘worst case’ basis. 

Appendix 

It remains here to justify the approximation of treating all of the (multiple) 
nuclear and Coulomb scattering jointly by the Fermi distribution. First it 
is argued that this makes sense for a sufficiently long step length and then 
it is shown that a typical ELSHIM step thus qualifies. 

The Fermi distribution rests on the same approximations as those result- 
ing in a Gaussian distribution for either (projected) angle or displacement 
in MCS (cf. Appendix of ref. [l]). This involves the Central Lit Theorem 
which states that the distribution of the sum of a sufllciently large number of 
random variables, chosen from a common distribution, is Gaussian.[ll] Some 
restrictions to the underlying distribution apply but a sufticient condition 
is that it has finite variance. This is true here, though it requires invoking 
a large angle cutoff which enters here naturally from considerations of nu- 
clear sire. The coherent part (nuclear-plus-Coulomb) is to be regarded as a 
single distribution on physical grounds. Under c&ain broad conditions the 
Central Limit Theorem holds also for random variables derived from ti 
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ferent distributions with the same mean [ll] and the small incoherent part 
included in MCS easily meets these conditions. 

The question now is whether the number of acatterings in one step (in 
ELSHIM, between point processes) is sufficiently large for the Theorem to 
apply. To test for this the spread of the Gaussian in such a step will be 
compared to b’,,,.,, the maximum single scattering angle. For Coulomb scat- 
tering it can be shown [12] that-regardless of step length-for a projected 
angle, 19, beyond about 2.5(01)‘/a, the single scattering tail contributes more 
than the MCS Gaussian.[l3] However, for a sutEciently long step, 2.5(01)‘/a 
will exceed &,,,,, the maximum projected single scattering angle, and the 
approximation may thus be regarded to pass the test if r9,.. <w 2.5(8~)‘~2. 
To make simple estimates of (P)l/l and B,., the nuclear part of the scat- 
tering is ignored. Especially for heavy ions the Coulomb part determines 
almost all of (@1)1/a. The usual expression for (0a)1/a is: [12] 

(02) = 6.2. lO-$+ ~JI Z,,s174 1,3 ’ f 
P +‘T 

(3) 

where p is the total momentum of the ion in GeV/c, and L is the steplength 

in g/cml. For all Z of interest 3 < l~174/(2~‘~ f 2;‘“) < 4.5 and simply 
replacing this factor by 4 yields 

(~9~) = 2.5.10-e% . L. 

The maximum angle is expected to occur at an impact parameter where the 
two nuclei just touch. The corresponding projected angle is 

t9 0.1 
-s = (Ay3 + @jp’ 

This is a standard expression for Coulomb scattering but it should still hold 
approxbnately when the nuclear part is added because absorption quickly 
becomes dominant at lesser impact parameters. Choosing 10 g/cm’ as a 
typical value for L and comparing Sk,, with 2.5l(P) results in 

Z;Z;(Ay + A$3)z > 64 
AT 

For practical purposes, beryllium is the lightest target material to be con- 
sidered. For ZT = 4, AT = 9, eq. 6 is already satisfied for proton projectiles. 
Even though ELSIM would be preferred for that case, it proves the point 
about the validity of using the Gaussian and Fermi distributions. 
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